Table of Contents | Introduction | |----------------------------------| | LAN4 | | Serial4 | | Digital Input/Output4 | | Software5 | | Power | | Environment5 | | Dimension | | Panel Layout | | Connecting Power | | Connecting Ethernet Port | | Connecting Serial Port | | Switch SW1 Settings | | LED Status9 | | Serial Port Pin Assignments | | Factory Default Settings | | Configure BWS-136 | | Configuration Utility14 | | Serial and Data Packing Settings | | TCP/IP Network Settings | | Device Name Settings | | Access Control Settings | | Save Configuration | | Save Configuration to File | | Overview24 | | Serial Console Mode | 25 | |---------------------|----| | Telnet Console Mode | 26 | | Forgot Password | 27 | | Command Syntax | 27 | | Echo Syntax | 32 | # 1 # Introduction ### **Overview** BWS-136 provides the easiest way to enable serial industrial device with networking capability. BWS-136 converts the serial data to standard TCP/IP protocol therefore the serial device can be accessed everywhere via Internet or Ethernet. In addition, BWS-136 provides an embedded Web server which allows user to save the custom web page therefore user can use a standard Web browser to remote manage the serial device. Package Check List BWS-136 is shipped with following items: - 1. BWS-136 Module - 2. Software CD and Electronic user manual ## **Product Specifications** ### LAN Ethernet: 10/100 Mbps, RJ45 x1 Protection: Built-in 1500V magnetic isolation #### Serial RS-232/422/485: DB9 connector x1 RS-232: RxD, TxD, RTS, CTS, DSR, DTR, DCD, GND RS-422: RX+, RX-, TX+, TX-, GND RS-485: Data+, Data-, GND Baud Rate: 300~38400 bps Parity: None, Even, Odd Data Bits: 7, 8 Stop Bits: 1, 2 Flow Control: RTS/CTS, XON/XOFF Protection: 15KV ESD ## **Digital Input/Output** General Purpose DIO x8 DIO0 to DIO5: Programmable Digital I/O (TTL) BWS-136_User Manual.doc - 4 - ### DIO6 to DIO7: Programmable Digital I/O (CMOS) pin 1 : DIO 4 pin 2 : DIO 3 pin 3 : DIO 2 pin 4 : DIO 1 pin 5 : DIO 0 pin 6 : DIO GND pin 7 : DIO 7 pin 8 : DIO 6 pin 9 : DIO 5 ### Software Protocol: TCP, UDP, IP, HTTP, ICMP, DHCP, Telnet Utility: Java Configuration. Web Configuration, Serial Console, Telnet Console Operation Mode: TCP Server, TCP Client, Web Control ### **Power** Power input: 9~40VDC@100mA Connector: Power Jack or Terminal Block ### **Environment** Operating Temperature: -10~60°C (14~140°F), 5~95% RH BWS-136_User Manual.doc - 5 - Storage Temperature: -20~85°C (-4~185°F), 5~95% RH ### **Dimension** 108x78x25 mm (HxWxD) without ear 2 # **Getting Started** ### **Panel Layout** ## **Connecting Power** Connecting 9~40VDC power line with the BWS-136 terminal block or the power jack. If the power is properly supplied, the Power LED will keep solid yellow color. ## **Connecting Ethernet Port** Connect a RJ45 Ethernet cable to the Ethernet port of BWS-136. The Link/Activity light will keep solid yellow color if Ethernet cable is corrected to the network and this light will keep flashing if there are data transmitted. ### **Connecting Serial Port** Use a null modem DB9 serial cable to connect a RS232 serial device to BWS-136 serial port. The null modem cable will cross over the RxD to TxD connection between the serial device to BWS-136. ### **Switch SW1 Settings** Set the SW1 setting to RS-232 mode and pin definition of BWS-136 serial port is as follow: #### SW1 Setting: | SW1 Key | 1 | 2 | 3 | 4 | 5 | |---------|-----|-----|-----|-----|-----| | RS-232 | ON | OFF | OFF | - | - | | RS-422 | OFF | OFF | OFF | - | - | | RS-485 | OFF | ON | ON | - | - | | Normal | - | - | - | OFF | OFF | | DHCP | | | | OFF | ON | | Default | | | | ON | OFF | | Console | | | | ON | ON | Normal: BWS-136 is in Normal Operation Mode **DHCP**: Network IP Address is assigned by DHCP Server **Default**: All the settings are reset to Factory Default. **Console**: COM1 serial port is served as console port. User can use ACSII command to configure BWS-136 via COM1 port. Please refer to Appendix I for the ASCII command All the settings will not be effective until system reboot by pressing RESET button #### **LED Status** The LED provides the BWS-136 operation information. The BWS-136_User Manual.doc - 9 - LED status is described as follow: Power LED: Power LED keeps ON if power (+9VDC to +40VDC) is correctly input to BWS-136. Ready LED: Ready LED keeps ON when BWS-136 firmware is ready for operation. Ready LED will be flash when BWS-136 in Serial Console mode (SW1 key 4 and key 5 are ON) or Telnet Console mode (Telnet Console port:5001 are connected) Link/Act LED: Link and Activity LED will turn ON when the Ethernet cable is connected. When there is network data traffic, this LED will be flash. RX/TX LED: The RX/TX LED is a dual color LED that indicates the serial data traffic. In RS-232 mode, the Yellow LED stands for transmitting data and Green LED means receiving data. In RS-422/485 mode, the Yellow LED stands for receiving data and Green LED means transmitting data. ### **Serial Port Pin Assignments** Serial Port COM1 uses a Male DB9 connector and it includes RS-232, RS-422 and RS485 signal and pin assignments are described as follow: | Pin | Transmission Signals | | | | | | |--------|----------------------|--------|--------|--|--|--| | Number | RS-232 | 4-wire | RS-485 | | | | | | | RS485 | | | | | | 1 | DCD | TxD- | - | | | | | 2 | RxD | TxD+ | - | | | | | 3 | TxD | RxD+ | Data+ | | | | | 4 | DTR | RxD- | Data- | | | | | 5 | GND | GND | GND | | | | | 6 | DSR | - | - | | | | | 7 | RTS | - | - | | | | | 8 | CTS | - | - | | | | | 9 | - | - | - | | | | ### Digital I/O Digital I/O uses DB9 connector and the pin assignments are described as follow: pin 1 : DIO 4 pin 2 : DIO 3 pin 3 : DIO 2 pin 4 : DIO 1 pin 5 : DIO 0 pin 6: DIO GND pin 7 : DIO 7 pin 8 : DIO 6 pin 9 : DIO 5 DIO0 to DIO5 are TTL compatible Programmable DIO and DIO 6 to DIO7 are CMOS compatible Programmable DIO. (TTL can pull up +5 V and CMOS can pull up +3 V.) # **Factory Default Settings** If you forget your BWS-136 settings, you use SW1 to reset BWSto factory default settings. The factory default settings are: IP Address: 192.168.16.10 BWS-136_User Manual.doc - 12 - Data Port: 4000 **Telnet Port: 5001** Web Port: 80 Baud rate: 19200 **Data Format: N,8,1 (Parity, Data bits, Stop bits)** Flow Control: None **Interface: RS-232** ### **Configure BWS-136** BWS-136 provides three ways to configure the settings. They are: 1. Configuration Utility 2. Web Configuration (Only for change IP address) 3. Telnet Console # 3 # Configuration # **Configuration Utility** Once this program started, it will perform a broadcast search to find the BWS device in the network. If you cannot find the BWS module and you know the IP address of the module, you can click **Search by IP** item and specify the IP address to find the BWS-136. The default IP address of BWS-136 is **192.168.16.10.** Click on the row of the BWS-136 setting, the configuration window will open as follow: When the SWI is set to Console mode, BWS-136 cannot be discovered by the Configuration Utility and the configurations are controlled by serial console. When enter the configuration mode, the READY LED will be flashing and TCP Data Port will be disabled and data transfer between serial port and Ethernet port will be stopped. ## **Serial and Data Packing Settings** The group of setting is to configure the serial interface and data packing settings. Data Packing setting is are as follow: BWS-136 User Manual.doc - 15 - **Length**: Pack the length of serial data before forwarding data to Ethernet port **Timeout**: the period of time to forward data to Ethernet Port **Delimiter**: Wait for the Delimiter Character before forwarding data to Ethernet port. The Delimiters are maximum two bytes Hex format ASCII code. If you use Carriage Return (CR) and Line Feed (LF) as delimiters, you can specify 0D0A or 0d0a. ### **TCP/IP Network Settings** The group of TCP/IP Network settings are configuring the IP Address, TCP port and operation mode as follow: **OpMode**: TCP operation mode setting TCP Port: TCP Port number of BWS-136 **Destination IP**: The IP address of remote host which BWS-136 will actively connect to (TCP Client mode only) **Connect At:** Startup means TCP connection is established when system starts (TCP Client mode only) **Timeout**: When this option is checked, TCP connection will be disconnected if there is no serial data activity before timeout **IP Mode**: Configure the IP Address to be Static IP or Dynamic IP by DHCP IP Address: Set the Static IP Address Subnet Mask: Subnet Mask setting Gateway: Gateway address setting ## **Device Name Settings** Click Edit Device Name button can edit the device name ## **Access Control Settings** BWS-136 provides IP address filtering method and password authentication for access control **Enable IP Filtering**: When this option is checked, user can specify the starting IP address and ended IP address which are allowed to access BWS-136 TCP port in order to prevent unauthorized access. **Password Settings**: Enter the new password will enable the password authentication. Password is required to login Java Configuration and Web configuration Pages in the next entry. ### Auto report: 1. Use the broadcast function to find the BWS-136 which you have upgraded with mgr1130 utility. Notice: You can still configure the new version BWS-136 with the Java configuration utility, but you can't find the new function in java utility. The user interface has been changed for the new function. Double click the device which you choose then it will appear configuration screen. The new function was design in the "Access Control Settings" page. Input the ID information in the "Device name" option. 3. Switch to the "Access Control Settings" page, enable auto report function and input the necessary information. #### Notice: - 1. The unit of timeout option is minutes. - When the BWS-136 have connected the report server and finished the ID information transfer, the BWS-136 will auto break the connection between report server and BWS-136. ## **Save Configuration** After the all the settings are configured, click to the **Save to Module button** to save the settings to the module. The new settings will be effective after the reboot of module by clicking the **Reboot Module** button. If the IP address had been modified, please do broadcast search or search by IP again to find the BWS-136 module. ### **Save Configuration to File** You can also save current configuration to file by click the **Save to File** button. A new window to specify the path of the file will pop out as follow: The configuration is a text file and uses extension of txt. If you use Text editor to open the configuration command, you will notice that the configuration file contains the ASCII command set of the configuration. You can also edit these commands by the text editor to configure the settings and import it to the BWS-136 by using the Import button. # 4 # **Web Configuration** ### Overview BWS-136 can also be configured by Web Browser(only for IP address and serial mode). The build-in Web server and Web configuration pages makes BWS-136 configurable anywhere via a Web browser such as IE and Firefox. To open the Web configuration pages, you can simply type the IP address to the Web Address input such as 192.168.16.10. The Login windows will ask you enter password if the password option is enabled. After password confirmed, the web configuration page will show up as follow: **Serial/Telnet Command** BWS-136 provides a set of ASCII command to configure BWS through a serial and Ethernet port. User can use serial terminal or Telnet command to configure BWS-136 when Web browser and Java utility are available. In addition, these functions provide user the most convenient way to develop their own configuration utility software simply to use the ASCII command. **Serial Console Mode** To enter the Serial console mode, you can switch SW1 (4~5) to ON position and then serial port will function as a console port. The READY LED will keep flash that indicates BWS-136 is in serial console mode. Please set the serial data setting of the Serial Terminal software (such as Hyper Terminal) to be the same as the BWS-136 serial port. If you forgot the serial port setting, you can use SW1 to reset it to factory default setting as use following setting: Baud rate: 19200 Data Format: N,8,1 (Parity, Data bits, Stop bits) Flow Control: None Interface: RS-232 Now you can use serial terminal software to send the ASCII BWS-136 User Manual.doc - 25 - command to BWS-136. In Serial Console Mode, all the network functions will be disabled Once the configuration is completed, remember to switch SW1 back to Normal operation mode and reboot the module by Reset Command or push reset button. #### **Telnet Console Mode** BWS-136 uses Port number **5001** as telnet console port. Remember to turn on the LOCALECHO before opening the telnet console port. You must login first before sending command to BWS-136. If password is enabled, you need to use the password to log in. The password is encrypted using Tiny Encryption Algorithm (TEA) and the keys are sixteen bytes with low case character from "a" to "p". The login command format is as follow: \$LOG[16 bytes of TEA Encrypted Password] or \$LOG if there are no password settings ## **Forgot Password** If you forgot the Password, you can switch SW1 to Factory Default setting mode and use default IP Address 192.168.16.10 and enter the Web console pages. Once the configuration is completed, remember to switch SW1 back to Normal operation mode and reboot the module by Reset Command or push reset button. Password is not required for serial console mode. Therefore you can also use serial console to reset the password. ## **Command Syntax** The command syntax is [Delimiter][Command][Carriage Return/CR][Line Feed/LF] **Delimiter (one byte)**: The command begins with a delimiter of dollar sign \$ and if BWS-136 receives the correct command it will response with an echo which begins with the delimiter of a percentage sign %. **Command**: The command are ASCII string which contains three elements: {Read/Write}{Function}{Parameter} as described as follow: | Command | R | w | Function | Parameters | |----------|---|---|--------------------------|-------------------| | Category | | | (2 bytes) | (command related) | | Basic | G | S | BN: Device Name | Max. 14 bytes | | | G | | BM: Model Name | Default | | | | S | BP : Password | Max. 8 bytes | | | G | | BV : Firmware Ver | Default | | Serial | G | S | SB: Baud Rate | 1200 | | | | | | 2400 | | | | | | 4800 | | | | | | 9600 | | | | | | 19200 | | | | | | 38400 | | | G | S | SD: Data Format | N72 | | | | | (Parity,Data,Stop) | E71 | | | | | | 071 | | | | | | N81 | | | | | | E72 | | | | | | 072 | | | | | | E81 | | | | | | 081 | | | | | | N82 | | | G | S | SF: Flow Control | NONE | | | | | | RTS/CTS | | | | | | XON/XOFF | | | G | S | SI: Interface | RS-232 | | | | | | RS-422 | |-----------|---|---|--------------------|----------------------------| | | | | | RS-485 | | Network | G | S | LI: IP Address | e.g. \$SLI192.168.2.127 | | | G | S | LN: Netmask | e.g.\$ <i>SLN255.0.0.0</i> | | | G | S | LG: Gateway | e.g. \$SLG192.168.2.254 | | | G | S | LC: IP Mode | 0: Static IP | | | | | | 1: DCHP | | | G | | <i>LM</i> : MAC | Default | | | G | | LS: LAN Status | Link fail | | | | | | Link OK,100M | | | | | | Link OK, 10M | | Operation | G | S | OM: Operation | TS:TCP Server | | | | | Mode | TC:TCP Client | | | G | S | OC: TCP connection | AC: always connect | | | | | timeout option | TO: Disconnect if | | | | | | timeout | | | G | S | OU: Timeout clock | 0~65535 | | | | | | (unit: ms) | | | | | | e.g. \$ <i>SOU500</i> | | | G | S | OD: Data Packing | Three parameters:{ | | | | | | [0]:Delimiter Option | | | | | | [1]: Timeout Option | | | | | | [2]: Length Option | | | | | | }={1:Enable,0:Disable} | | | | | | e.g. <i>\$SOD110</i> | | | G | S | OS: Delimiter | Max. two bytes characters | BWS-136_User Manual.doc - 29 - | | | | | e.g. \$SOS0D0A (CR/LF) | |------------|------------------|---|------------------------------|-----------------------------| | | G | S | OT: Timeout | 0~65535 | | | | | | (unit: ms) | | | | | | e.g.\$ <i>SOT500</i> | | | G | S | OL: Data Length | 0~1024 | | | | | | e.g.\$ <i>SOL20</i> | | Access | G | S | OF:IP Filtering | 0: Disable | | Control | | | | <i>I</i> :Enable | | | G | S | OI: Authorized IP | e.g.\$SOI192.168.16.1:192.1 | | | | | | 68.16.9 (Starting IP:Ended | | | | | | IP) | | TCP Server | G | S | VP: Listen Port | 1~65535 | | | | | | e.g. \$SVP4000 | | TCP Client | G | S | CI: Destination IP | e.g.\$SCI192.168.16.200 | | | \boldsymbol{G} | S | CP : Destination Port | e.g.\$ <i>SCP4001</i> | | | G | S | CC: Connection | 0: Reserved for PPPoE | | | | | Logic | 1:Establish connection when | | | | | | Serial Data in | | System | | S | YC: System mode | R: Reboot system | | | | | | F: Reset to default setting | | | | | | and reboot | | | | | | D: Set current setting as | | | | | | Default setting | | | | S | EI: Exit console | | | DIO | | S | DM: Set Digital I/O | I: Input | | | | | mode | O:Output | BWS-136_User Manual.doc - 30 - | | | | e.g. \$SDMI:0,4,5 | |---|---|---------------------|-------------------------| | | | | set DIO0, DIO4, DIO5 as | | | | | input | | | | | \$SDMO:1,2,3,6,7 | | | | | set | | | | | DIO1,DIO2,DIO3,DIO6,DI | | | | | O7 as output | | G | | DM: Get Digital | e.g. \$GDM | | | | I/O mode | the response is | | | | | %GDM I,O,O,O,I,I,O,O | | | S | DOH: Set DO | e.g. \$SDOH:1,3,7 | | | | channel High Output | | | | S | DOL: Set DO | e.g. \$SDOL:2,6 | | | | channel Low Output | | | G | | DI: Get DI channel | e.g. \$ <i>GDI</i> | | | | status | the response is | | | | | %GDI 0=1,4=0,5=1 | | | | | It stands for | | | | | DIO0=1,DIO4=0,DIO5=1 | | | | | | Remark: Italic font stands for Command String **CR/LF** (**two bytes**): Both command from host and echo from BWS-136 are terminated with a Carriage Return (ACSII code Hex 0d) and Line Feed (ASCII code Hex 0a). Therefore please remember to add CR/LF at the end of command line in the terminal emulation program. #### All command strings are in Upper Case ### **Echo Syntax** After BWS-136 console port received correct command string, it will response Echo String and the Echo Syntax is as follow: [Delimiter][Function][Status] Delimiter (One byte): A percentage sign "%" Function (Two bytes): function string Status: "OK" or "FAIL" For example: Set the IP Address by sending command \$**SLI192.168.16.100**(CR)(LF) Echo string ### %SLIOK(CR)(LF) means the new IP address is successfully transferred to the module and the new setting will be effective after reboot the module. To get IP address setting, you can send a command as follow \$GLI then the Echo string will be %GLI192.168.16.100 Always remember to reboot the module by send command *\$SYCR* to use the new configuration # Appendix A # **Tiny Encryption Algorithm** 1. Example of TEA.C The Tiny Encryption Algorithm (TEA) by David Wheeler and Roger Needham of the Cambridge Computer Laboratory. Placed in the Public Domain by David Wheeler and Roger Needham. **** ANSI C VERSION (New Variant) **** Notes:TEA is a Feistel cipher with XOR and addition as the non-linear mixing functions. Takes 64 bits of data in v[0] and v[1]. Returns 64 bits of data in w[0] and w[1]. Takes 128 bits of key in k[0] - k[3]. TEA can be operated in any of the modes of DES. Cipher Block Chaining is, for example, simple to implement. n is the number of iterations. 32 is ample, 16 is sufficient, as few as eight may be OK. The algorithm achieves good dispersion after six iterations. The iteration count can be made variable if required. Note this is optimized for 32-bit CPUs with fast shift capabilities. It can very easily be ported to assembly language on most CPUs. delta is chosen BWS-136 User Manual.doc - 33 - to be the real part of (the golden ratio Sqrt(5/4) - $1/2 \sim 0.618034$ multiplied by 2^32). This version has been amended to foil two weaknesses identified by David A. Wagner (daw@cs.berkeley.edu): 1) effective key length of old-variant TEA was 126 not 128 bits 2) a related key attack was possible although impractical. ``` ******************* //#include "xtea.h' void encipher(unsigned long *const v,unsigned long *const w, const unsigned long *const k) register unsigned long y=v[0],z=v[1],sum=0,delta=0x9E3779B9,n=32; while(n-->0) \{ y+=(z<<4 \land z>>5) + z \land sum + k[sum&3]; \} sum += delta; z+=(y<<4^{y}>>5) + y^{sum} + k[sum>>11 & 3]; w[0]=y; w[1]=z; void decipher(unsigned long *const v,unsigned long *const w, const unsigned long *const k) register unsigned long y=v[0],z=v[1],sum=0xC6EF3720, delta=0x9E3779B9,n=32; /* sum = delta << 5, in general sum = delta * n */ BWS-136 User Manual.doc - 34 - ``` ``` while(n-->0) { z-= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 & 3]; sum -= delta; y-= (z<<4 ^ z>>5) + z ^ sum + k[sum&3]; } w[0]=y; w[1]=z; } 2. The TEA.H #ifndef __XTEA_H__ #define __XTEA_H__ void encipher(unsigned long *const v,unsigned long *const w, const unsigned long *const k); void decipher(unsigned long *const v,unsigned long *const w, const unsigned long *const k); #endif ```